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Fig. 1: An overview of our foveated 360◦ video streaming pipeline. The upper and lower rows present the workflows with the
prior log-polar transformation and our proposed log-rectilinear transformation, respectively. Both foveated methods convert the
equirectangular video frames into down-sampled buffers, which are encoded and streamed to the client. After reprojection, our
log-rectilinear transformation greatly reduces the flickering and aliasing artifacts while maintaining high-quality rendering in the
foveal region and reducing overall bandwidth.

Abstract— With the rapidly increasing resolutions of 360◦ cameras, head-mounted displays, and live-streaming services, streaming
high-resolution panoramic videos over limited-bandwidth networks is becoming a critical challenge. Foveated video streaming can
address this rising challenge in the context of eye-tracking-equipped virtual reality head-mounted displays. However, conventional
log-polar foveated rendering suffers from a number of visual artifacts such as aliasing and flickering. In this paper, we introduce a new
log-rectilinear transformation that incorporates summed-area table filtering and off-the-shelf video codecs to enable foveated streaming
of 360◦ videos suitable for VR headsets with built-in eye-tracking. To validate our approach, we build a client-server system prototype
for streaming 360◦ videos which leverages parallel algorithms over real-time video transcoding. We conduct quantitative experiments
on an existing 360◦ video dataset and observe that the log-rectilinear transformation paired with summed-area table filtering heavily
reduces flickering compared to log-polar subsampling while also yielding an additional 10% reduction in bandwidth usage.

Index Terms—360 video, foveation, virtual reality, video streaming, log-rectilinear, summed-area table

1 INTRODUCTION

360◦ videos, also referred to as omnidirectional or panoramic videos,
offer superior immersive experiences by encompassing the viewers’
entire field of view and allowing them to freely look around the scene
with a full 360◦ field of regard. However, streaming solutions for 360◦
videos that transmit the entire 360 video frame result in much worse
perceived quality compared to streaming conventional videos [13, 39].
As most of the pixels in 360◦ videos are out-of-sight or in the peripheral
region, streaming 360◦ video requires a much higher resolution and
bandwidth to achieve the same perceived quality [38, 39]. Previous
research in viewport-adaptive 360◦ video streaming [17, 34, 38, 44] has
achieved significant bandwidth reductions and quality improvements
by culling out-of-sight regions for streaming videos to mobile devices.
However, with increasing resolutions from 360◦ cameras such as the
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11K Insta360 Titan1 and VR headsets such as the 3000 pixels-per-inch
(PPI) Varjo VR-12, additional bandwidth optimizations will be needed
for interactive, low-latency streaming of high-resolution 360◦ videos.

Several existing video processing and transmission pipelines address
limitations in transmission speed by varying the resolution to match
the human visual system. These foveated video techniques maintain
high-fidelity video in regions the viewer is currently focusing on while
reducing resolution in the peripheral areas to lower the bit rate necessary
to transmit or store the video. Many existing approaches to foveated
video coding and streaming [23–25, 30, 40, 41] use either multiple
resolution techniques or image transformation techniques.

Multiple resolution techniques divide a video into multiple video
tiles and encode each tile at several resolutions. These tiles are usually
independently streamed and then combined into a single video on
either the server or the client. Alternatively, image transformation
techniques map the peripheral areas to a lower resolution by applying
a transformation that models the spatially-varying resolution of the
human visual system. While both types of techniques are effective at
reducing the bit rate, they often lead to spatial and temporal artifacts
due to subsampling in the peripheral region [3].

In this paper, we present a new log-rectilinear transformation that
preserves full-resolution fidelity around the gaze position and a soft
blur in the peripheral region. By bringing together summed-area tables,
foveation, and off-the-shelf video codecs, our log-rectilinear trans-
formation enables foveated-video streaming for eye-tracking virtual
reality headsets. When incorporating our log-rectilinear transforma-

1Insta360 Titan: https://insta360.com
2Varjo VR-1: https://varjo.com



tion with summed-area-table-based filtering, image artifacts from the
conventional log-polar transformation are significantly reduced.

Our main contributions in this paper are:

• Introduction of a log-rectilinear transformation which leverages
summed-area tables, foveation, and standard video codecs for
foveated 360◦ video streaming in VR headsets with eye-tracking.

• Design and implementation of a foveated 360◦ video streaming
system with full capability of video decoding, generating summed-
area tables, sampling, and encoding.

• Quantitative evaluation of the log-rectilinear transformation on a
public 360◦ video dataset [2] with an ablation study demonstrating
the effects of summed-area table filtering.

The remainder of our paper is structured as follows: In Section 2,
we discuss previous approaches to foveated and 360◦ video coding,
streaming, and rendering. In Sections 3 and 4, we discuss the details
of our log-rectilinear transformation and how to integrate it into a
360◦ video streaming pipeline. In Section 5, we quantitatively evalu-
ate the video quality, bit rate, and performance of our log-rectilinear
augmentation. Finally, in Sections 6 and 7, we discuss the limitations
of our approach and potential future directions in 360◦ video stream-
ing for VR headsets. Supplementary material is available at https:
//augmentariumlab.github.io/foveated-360-video/.

2 RELATED WORKS

Our work builds upon previous approaches to 360◦ video streaming.
We leverage techniques from foveated rendering and summed-area
tables in our video streaming pipeline.

2.1 Foveated and 360◦ Video Streaming
As video streaming continues to grow in popularity, various approaches
have been proposed to reduce the bandwidth requirements of streaming
high-resolution video. Most existing approaches can be classified as
multiple resolution techniques [24,25,30,41] or quantization parameter
adjustments [20, 29]. For 360◦ videos and VR applications, tiling
techniques [13, 17, 18, 28, 35, 44, 51] stream only visible portions of the
video at a high quality and stream out-of-sight portions at a significantly
lower quality or even leave them out entirely.

Qian et al. developed Flare [38], a 360◦ video-streaming solution
for mobile devices, which builds upon existing tiling approaches. The
Flare system applies the tiling technique to viewport adaptive streaming,
which aims to stream the entire viewport of a 360◦ video at the full-
resolution on a mobile network. They develop a viewport-prediction
network, a tile scheduler, and employ rate-adaptation in their system to
strategically stream the entire viewport while minimizing the bandwidth
overhead of streaming out-of-sight regions. While their system success-
fully culls out-of-sight regions for the 360◦ video, it can only stream
videos at certain predetermined quality levels. Viewing 360◦ video in
high-resolution VR headsets will require a finer foveated streaming
approach along with out-of-sight culling to achieve the same quality
over a larger viewport.

While tile-based approaches work well for viewport adaptive 360◦
video streaming, they would not be practical for foveated 360◦ video
streaming where the quality levels differ not only between visible and
out-of-sight areas but also between different areas within the viewport.
For instance, Ryoo et al. [40] design a foveated streaming system for
2D videos which requires 144 tiles with 6 resolutions for each tile for
a total of 864 files. Applying the same approach for foveated 360◦
video streaming would require an order of magnitude more files due
to the panoramic nature. Using too few tiles would lead to tearing and
color mismatch artifacts as shown in Fig. 2. Splitting up videos this
way creates challenges for client devices that would need to stream,
decode, and render hundreds of streams simultaneously in sync while
also blending them to hide edge artifacts. Furthermore, creating and
storing hundreds of files per video is impractical for services such as
YouTube and Facebook where videos accumulate over time as users
upload more content each day.

Tearing

Color Mismatch

Fig. 2: Foveated streaming of 360◦ videos requires too many tiles due
to the large field of view and high variability of detail. Using too few
tiles leads to tearing artifacts (blue box) and color mismatch artifacts
(orange box) as shown above. The gaze position is marked with a cyan
circle at the center of the frame.

2.2 Foveated and 360◦ Video Rendering
The critical need for higher performance is motivating research in
foveated rendering which aims to improve graphics performance in
real-time applications.

Guenther et al. [14] developed the first foveated rendering pipeline
for 3D graphics that renders at three different resolutions based on
perceptual detectability thresholds [12] and composites the result to
yield the final foveated image. They conducted a user-study to de-
termine an acceptable foveation threshold and evaluated their system
by measuring the performance speedup. Their rendering technique
achieves an effective speedup of 5−6× on the prevalent displays and
they predicted higher speedups on higher-resolution, wider field-of-
view displays. Other foveated rendering techniques such as shading at
multiple resolutions [36], and rendering to a log-polar buffer [32] have
also been found to yield significant performance boost.

Although foveated rendering has the potential to dramatically in-
crease performance for high-resolution VR rendering, many current
approaches still yield undesirable visual artifacts. Turner et al. [45]
present a technique called phase-aligned foveated rendering to reduce
motion-induced flickering and aliasing artifacts in foveated rendering.
By aligning the pixel sampling to the virtual scene rather than the rota-
tion of the user’s head, they can remove flickering caused by rotational
movement with only 0.1 ms overhead rendering to a 2560×1440 VR
headset. While their technique yields very impressive results, it only
works for 3D graphics rendering but not for displaying 360◦ videos.
Recent advances in neural rendering present the potential to reconstruct
the foveated frame with generative adversarial neural networks [21].
Nevertheless, such methods are limited by training data and may pro-
duce flicker and ghosting artifacts for unexpected content.

2.3 Summed-Area Tables
Summed-area tables, also known as integral images, are a 2D extension
of prefix-sum arrays. First proposed by Frank Crow [6] as an alternative
to mipmaps for texturing, summed-area tables have found a wide range
of uses within computer graphics and computer vision. Given a 2D
array A = {ai j}, the summed-area table S = {si j} for array A has
elements:

si j =
i

∑
x=0

j

∑
y=0

axy.

The element at position i, j of S is the sum of all the elements in the
rectangle sub-array of A with diagonal corners (0,0) and (i, j).

Summed-area tables can be efficiently calculated on the GPU using
a variety of parallel algorithms [10,11,15,22,33]. The simplest parallel
algorithm for generating a summed-area table [15] calculates prefix
sums across each row in parallel on the GPU followed by each column
in parallel. Since a prefix scan can be computed in O(log(n)) time and
O(n) work using Blelloch’s scan algorithm [5], a summed-area table
can be computed in O(log(m)+ log(n)) time and O(mn) work for an
m∗n image given m∗n processors or threads. Recent algorithms [10,
11] leverage memory locality, kernel synchronization, and look-back
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Fig. 3: An illustration of the sampling positions of the log-polar transformation and our log-rectilinear transformation for foveation. Each square
corresponds to a single pixel. Larger blocks correspond to collections of pixels. In an ideal scenario, each sampled pixel should correspond to an
average of every pixel in their region. With the log-polar transformation, typically only one pixel is sampled in each region leading to foveation
artifacts. With our log-rectilinear transformation, we can get the average for each region with just four samples from a summed-area table. The
position of the sampling is offset by the gaze position.

techniques to compute summed-area tables with less than 10% overhead
over a GPU memory copy. Using the 1R1W-SKSS-LB algorithm by
Emoto et al. [10], an 8K×8K summed-area table of 32-bit floats can
be calculated in less than 1 ms.

In computer graphics, summed-area tables have been used for vari-
ous effects such as ambient occlusion [9], depth of field [15,26], glossy
environmental reflections [15], and feature correspondence [4, 46, 47].
Summed-area tables have also been extended to cube-maps [50] for
shadow mapping and translucent environment mapping. To the best of
our knowledge, we are the first to use summed-area tables for streaming
foveated 360◦ videos.

3 METHOD

Our log-rectilinear transformation combines resolution-reduction tech-
niques in foveated rendering and the constant-time filtering effects of
summed-area tables to enable foveated video streaming.

3.1 Log-Rectilinear Transformation
The conventional geometric transformation used to emulate the res-
olution falloff with eccentricity for the human eye is the log-polar
transformation [32, 48]. The log-polar transformation emulates the
spatially-varying resolution of the human visual system but leads to
an inefficient mapping from conventional, rectangular-packed video
sources. Around the gaze position, multiple pixels of the log-polar
buffer could be sampled from the same pixel in the original image. In
the peripheral regions, subsampling from the log-polar buffer causes
flickering and aliasing artifacts.

To address the drawbacks of the log-polar transformation, we pro-
pose a log-rectilinear transformation. Our log-rectilinear transforma-
tion, shown in Fig. 3 and Fig. 4, preserves full-resolution detail near the
gaze position while emulating the spatially-varying resolution of the hu-
man visual system similar to the existing log-polar transformation. To
achieve this, our log-rectilinear transformation satisfies several proper-
ties. First, regions of our log-rectilinear transformation are rectangular,
allowing constant-time filtering using summed-area tables. Second, our
log-rectilinear transformation expresses a one-to-one mapping from the
full-resolution video frame to the reduced-resolution buffer near the
gaze position. This is represented as ∆x = ∆u where ∆x is the distance
from the gaze position in the full-resolution W ×H video frame and ∆u
is the distance from the center of the reduced-resolution w×h buffer.
Third, our log-rectilinear transformation uses an exponential resolu-
tion decay based on the properties of the human visual system. We
accomplish this by using an exponential decay ∆x = exp(A ·K(u)) with
a kernel function K(u) = u4 from Meng et al. [32]. Here u represents

an axis on the reduced-resolution log-polar buffer and A is a variable
set to represent the scaling between the full-resolution frame and the
reduced-resolution log-polar buffer.

To adapt kernel foveated rendering expression (Equation 8 from
Meng et al. [32]) for the log-polar formulation to our log-rectilinear
transformation we make the following changes. First, we replace
u with |∆u|

w/2 ∈ [0,1], the normalized distance from the center of the
reduced-resolution buffer. Second, we subtract 1 from the exponential
so that |∆x| = 0 when |∆u| = 0. Third, we move the variable A out
of the exponential and set it to a constant λx. We set λx = W

e−1 so

that |∆x|= |W | when |∆u|
w/2 = 1, allowing the entire frame to be in view

when the user is looking at a corner. Our final exponential decay is

λx

(
exp
((
|∆u|
w/2

)4
)
−1
)

. To ensure a one-to-one mapping near the

gaze position, we take the maximum between |∆u| and our exponential
decay, giving us our final equation:

∆x = max

(
|∆u|, λx

(
exp

((
|∆u|
w/2

)4
)
−1

))
∗ sign(∆u) .

Inverting our log-rectilinear transformation is accomplished with the
following equation:

∆u = min
(
|∆x|, w

2
· ln1/4

(
|∆x|
λx

+1
))
· sign(∆x) .

We detail how the log-rectilinear transformation and its inverse are
applied to foveated streaming in Sect. 4.

3.2 Summed-Area Table Images
Although our log-rectilinear transformation maintains the high-quality
in the fovea region using a one-to-one mapping, it alone can not address
aliasing artifacts in the peripheral region. We propose sampling from a
summed-area table rather than directly from the image to reduce the
artifacts from foveated sampling.

Using summed-area tables allows us to quickly find the sum of any
axis-aligned rectangular block of the original array A:

i1

∑
x=i0

j1

∑
y= j0

axy = si1 j1 − s(i0−1) j1 − si1( j0−1)+ s(i0−1)( j0−1).

Dividing the sum by the size of the rectangle yields the average of
all values in the block. Using the average RGB values for periph-
eral regions significantly improves the quality compared to sampling
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Fig. 4: A comparison between the conventional log-polar transformation and our novel log-rectilinear transformation. The left and right columns
show the same video frame being foveated using the log-polar and log-rectilinear transformations, respectively. The lowermost image in each
column shows the final gnomonic projected video frame with foveation. The gaze position is marked with a purple circle. For both log-polar and
log-rectilinear, we use a buffer resolution of 1072×608.

the original image, eliminating aliasing artifacts as well as reducing
temporal flickering. When sampling from the summed-area table, we
are able to retrieve the average color values with only four memory
reads per pixel. For a m ∗ n frame, traditional filtering for foveation
requires O(mn) work after the gaze position is available. However, on
the highly-parallel GPUs one could use the summed-area tables to carry
out filtering much faster. Building the summed-area table on a GPU us-
ing parallel-prefix sums takes only O(log(m)+ log(n)) time over m∗n
processors and does not require knowing the latest gaze position. As
soon as the gaze position is available, sampling the summed-area table
only takes O(1) time, reducing the latency in the sampling stage. By
reducing the overhead in sampling, we minimize the latency between
receiving the latest gaze position of the viewer and sending out the next
frame on the server.

4 SYSTEM

We demonstrate the applicability of our transformation by designing
and implementing a foveated video streaming pipeline for eye-tracking

VR headsets. Our pipeline consists of a real-time video transcoding
pipeline with two additional steps on the server: a summed-area-table
encoding step and a log-rectilinear sampling step. Our full pipeline,
shown in Fig. 5, consists of four processing stages for the server and
two processing stages for the client.

4.1 Server Pipeline
Our workflow on the server consists of four stages: video decoding,
summed-area table generation, log-rectilinear buffer sampling, and log-
rectilinear buffer encoding. Every frame of the video must be processed
through the pipeline, but decoding and summed-area table generation
are buffered on the server.

4.1.1 Stage 1: Video Decoding
Our first stage for the server is video decoding. In this stage, the full-
resolution video is decoded on the server and converted from YCbCr
color-space into a 24 bits-per-pixel RGB image. In our research proto-
type, we use FFmpeg, a multimedia library (https://FFmpeg.org),
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Fig. 5: The system workflow for our integrated foveated video streaming prototype. Our server consists of four stages which include decoding the
video, building a summed-area table, sampling the summed-area table into a log-rectilinear buffer, and streaming the log-rectilinear video buffers.
The client first sends a video streaming request to the server, then continuously updates the gaze position to the streaming server. For video
processing, the client has two stages: decoding the log-rectilinear video and interpolating it into a full-resolution video frame.

for both video decoding and encoding. The decoding process can be
hardware accelerated on Intel, NVIDIA, and AMD platforms using
FFmpeg.

4.1.2 Stage 2: Summed-Area Table Generation
In the second stage, our server computes the summed-area table repre-
sentation for the full-resolution image. We use the RGB color-space
and compute the summed-area tables for each channel independently,
though our method can also be applied to other color-spaces such as
YCbCr or HSV. Our research prototype leverages the GPU by using the
OpenCL API for parallel computation.

4.1.3 Stage 3: Log-Rectilinear Sampling
In the third stage, we compute a reduced-resolution log-rectilinear
buffer. For a full-resolution 1920× 1080 (W ×H) video, we sample
to a reduced-resolution buffer of size 1072× 608 (w× h) so that the
ratio of full-resolution to reduced-resolution (W/w) is at least 1.8, a
ratio found to yield virtually indistinguishable results for users with
log-polar-based foveation in VR headsets [32]. During this stage, we
use the viewer’s last updated gaze position when creating the reduced-
resolution buffer. We use OpenCL for computing the log-rectilinear
buffer.

4.1.4 Stage 4: Log-Rectilinear Encoding
The final stage of our pipeline consists of encoding the reduced-
resolution log-rectilinear buffer into an H.264 video packet and muxing
into a fragmented MP4 (fMP4) packet. Once again, we use FFmpeg
for the encoding stage which supports hardware-accelerated encoding
through NVIDIA NVENC. After encoding, the packet gets sent to the
client over the network through a socket.

4.2 Client Pipeline
Our pipeline for the client augments video decoding with a post-
processing step to convert the log-rectilinear transformed buffer into a
standard video frame.

4.2.1 Stage 1: Video Decoding
Upon receiving the encoded packet from the server, the client decodes
the packet yielding the reduced-resolution log-rectilinear buffer. Al-
though the end-user never sees the log-rectilinear buffer, the buffer is
cached on the GPU for post-processing.

4.2.2 Stage 2: Inverse Log-Rectilinear Transformation
In the second stage, the client performs a post-processing step to ex-
pand the reduced-resolution log-rectilinear buffer into a full-resolution

foveated video frame. We employ bilinear interpolation on the GPU to
restore the full-resolution video frame.

5 EVALUATION

We evaluate the potential benefits and drawbacks of our approach by
conducting a quantitative evaluation of our visual quality, bandwidth
savings, streaming latency, and computational overhead. We compare
our log-rectilinear transformation with summed-area table sampling
against the log-polar transformation commonly used in foveated render-
ing. Throughout our evaluation, we also include an ablation study of the
summed-area table on public datasets. We present a side-by-side visual
comparison between foveation using the log-polar transformation and
our approach in the supplementary video.

5.1 Datasets and Configuration
To validate our approach and ensure replicability, we quantitatively
evaluate our video streaming system with the benchmark 360◦ video
dataset of Agtzidis et al. [2]. The dataset consists of 14 diverse 360◦
videos with gaze and head paths of 13 participants using a FOVE3

eye-tracking VR headset. We conduct quality, bandwidth, and per-
formance overhead comparisons on all the available 172 (participant,
video) pairs and report the aggregate averaged metrics. Detailed results
for each video are available in the supplementary material. For visual
quality, we present a side-by-side comparison with the drone video in
our supplementary video and quantitatively evaluate the corresponding
visual quality for log-polar foveation, log-rectilinear foveation, and
log-rectilinear foveation with SAT. For a break-down analysis of per-
formance, we measure latency and processing time also with the drone
video in the dataset. Performance measurements are similar for other
videos in the dataset.

We conduct all the following experiments on a server with an Intel
Core i7-8700K CPU and NVIDIA RTX 2080 Ti GPU and a client
with an Intel Core i5-5300H CPU and NVIDIA GTX 1050 GPU. For
our benchmarks, decoding is accomplished on the CPU by x2644 and
encoding is performed on the GPU by NVIDIA NVENC using FFmpeg
API. Our overall experiments and measurements are performed on the
1080p (1920× 1080) equirectangular projected frame of each 360◦
video and using a 1072×608 reduced-resolution buffer. As videos in
the original dataset have varying resolutions up to 3840× 2160, we
pre-process the videos to 1920× 1080 for our experiments. For the
log-polar method, we apply a 3×3 Gaussian blur to the right-half of
the log-polar encoded buffer following Meng et al. [32] during the
sampling stage. No blur is applied for our log-rectilinear method.

3FOVE VR Headset: https://www.getfove.com
4x264: https://www.videolan.org/developers/x264.html
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Fig. 6: Overview of the Flicker metric by Winkler et al. [49] which
captures the change in visual artifacts using a linear combination of
Fourier coefficients.

5.2 Quality
To evaluate the visual quality of our approach, we compare the differ-
ences between our foveated video and the original video when encod-
ing the reduced-resolution representations in a constant quality mode.
We compute the weighted spherical peak signal-to-noise ratio (WS-
PSNR) [43] of the luminance channel (Y) because the eye is more
sensitive to changes in luminance as opposed to changes in chromi-
nance [19]. We also compute the Structural Similarity Index (SSIM)
between the original videos and the foveated videos.

We adapt the metric by Winkler et al. [49] to measure flickering.
We first compute the difference in luminance between foveated frames
{xi} and reference frames {yi} to yield deltas {di = xi− yi}. Then we
compute the difference between consecutive deltas {ci = di− di−1}.
For each difference ci, we compute the discrete Fourier transform
which gives a vector of Fourier coefficients ri. Next, we compute a
sum sL over low frequencies and a sum sH over high frequencies to get
a per-frame flicker sL + sH . Finally, we average the flickering across
all consecutive frames in the video to get a per-video flicker value. As
each video in the dataset is of a single scene, we evenly weigh every
frame when computing the total per-video Flicker metric.

Our final Flicker metric is as follows:

di = xi− yi

r(i) = DFT(di−di−1)

sL(i) =
1

fM− fL

fM

∑
k= fL

rk(i),

sH(i) =
1

fH − fM

fH

∑
k= fM

rk(i),

Flicker =
1

N−1

N

∑
i=2

(sL(i)+ sH(i))

where N is the total number of frames, {xi}N
i=1 are frames of the

foveated video, {yi}N
i=1 are frames of the reference video, DFT rep-

resents computing Fourier coefficients, and fL, fM , fH are predefined
frequency limits. As in Winkler et al. [49], we use frequency limits of
fL = 1%, fM = 16%, and fH = 80% relative to the maximum frequency.
An illustration of this Flicker metric is shown in Fig. 6.

We show the averaged results of our quality comparison across
all (participant, video) combinations with intermediate encoding of
transformed buffers in Table 1 and without intermediate encoding in
Table 2. Per-video averaged results with intermediate encoding are
shown in Fig. 8, Fig. 9, Fig. 10, Fig. 11, and available in the Table 6.
We also show how the WS-PSNR scales with available bandwidth in
Fig. 7 using the gaze of the first available participant (P3).

5.3 Bandwidth
We measure the average bitrate of the H.264 stream produced by FFm-
peg to determine the compression ratio achieved by our foveation
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Fig. 7: Comparison of visual quality (WS-PSNR) across bitrates rang-
ing from 100 Kbits/s to 6 Mbits/s. Foveation with SAT Log-Rectilinear
yields better quality across the entire range of bitrates.

Table 1: Quality comparison of various foveation methods based on
the aggregate average values of WS-PSNR, SSIM, and Flicker metrics.
Our SAT Log-Rectilinear method yields significantly less flickering
with comparable visual fidelity.

Sampling Method WS-PSNR (db) ↑ SSIM ↑ Flicker ↓
Log-Polar 25.18 0.864 160.8
Log-Rectilinear 27.23 0.906 192.8
SAT Log-Rectilinear 28.00 0.908 110.0

Table 2: Quality comparison of various foveation methods without
encoding intermediate log-polar and log-rectilinear buffers to H.264.

Sampling Method WS-PSNR (db) ↑ SSIM ↑ Flicker ↓
Log-Polar 25.47 0.877 161.4
Log-Rectilinear 27.48 0.918 196.4
SAT Log-Rectilinear 28.50 0.921 98.4

Table 3: Bandwidth evaluation of different video streaming methods
based on the average packet size and bit rate. Our SAT log-rectilinear
method yields significant bandwidth savings compared to other methods
when encoding with H.264 in constant quality mode.

Sampling Method Average Packet Size ↓ Bit rate ↓
Full Resolution 24.50 KB 5.88 Mbps
Log-Polar 13.91 KB 3.34 Mbps
Log-Rectilinear 15.50 KB 3.72 Mbps
SAT Log-Rectilinear 12.44 KB 2.99 Mbps

technique. All pipelines encode their representations into the main
profile of H.264 with the constant quality parameter (cq) set to 25.
Bitrates and the corresponding per-frame packet sizes for each pipeline
are shown in Table 3.

In our implementation, the server reads and decodes a single full-
resolution 1080p H.264 MP4 file. No lower-resolution copies of the
video are stored on disk or used during the decoding process. Our
server calculates the summed-area table in real-time and buffers it in
GPU memory. For a 1080p frame, this requires only 24 MB of GPU
memory when storing the summed-area table using 32-bit integers.



Table 4: Performance comparison of video streaming based on various foveation methods. Our Summed-Area Table (SAT) Log-Rectilinear
pipeline requires an additional 1 to 2 ms compared to other pipelines which sample directly from the raw video frames.

Sampling Method Decoding (ms) Processing (ms) Sampling (ms) Encoding (ms) Total (ms)

Log-Polar 6.14 1.91 0.55 2.86 11.46
Log-Rectilinear 6.13 1.91 0.53 2.85 11.43
SAT Log-Rectilinear 6.14 3.00 0.46 2.84 12.44
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Fig. 8: Quantitative evaluation of the average weighted spherical peak-
signal-to-noise-ratio (WS-PSNR) in streaming each foveated video.
Our SAT Log-Rectilinear method yields the highest WS-PSNR for all
videos.
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Fig. 9: Quantitative evaluation of the average Structural similarity index
(SSIM) in streaming each foveated video. Our SAT Log-Rectilinear
method yields the highest SSIM for most videos.

Table 5: Break-down analysis of the client latency. Our profiling results
show that foveation only adds 7 milliseconds to the overall latency
when responding to user interactions.

Stage Non-foveated Client Foveated Client
Runtime (ms) Runtime (ms)

Server Response 82 ms 76 ms
Decoding 27 ms 27 ms
Unwarping 0 ms 13 ms
Total 109 ms 116 ms
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Fig. 10: Quantitative evaluation of our flickering metrics for foveating
each video in the dataset. Our SAT Log-Rectilinear method yields the
lowest flickering for every video.
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Fig. 11: Measurements of the bitrate for streaming each video when
encoding using a constant quality mode to H.264. On average, our
SAT Log-Rectilinear method results in a 23% reduction in bandwidth
consumption compared to Log-Polar foveation.

5.4 Computational Overhead

To evaluate the streaming overhead of our log-rectilinear foveation,
we compare the overall response time of a non-foveated client and
a foveated video client to user input. As shown in Table 4, our log-
rectilinear transformation yields similar runtime for sampling and en-
coding foveated video, adding only an additional 2 ms overhead when
building the summed-area table. According to Table 5, our foveated
pipeline adds only about 7 ms of overall latency responding to user in-
put compared with a non-foveated pipeline. Foveation reduces the total
server response time from 82 ms to 76 ms (7.3%) due to the reduced
resolution the server needs to encode and the smaller packet sizes.

We implement three foveation pipelines mainly in C++ and measure
the average time at each stage of the pipelines to quantify the perfor-



Table 6: Complete Results of our Visual Quality and Bandwidth Evaluation: We include full evaluation results of WS-PSNR, SSIM and bitrate
for streaming each of the 14 videos in the benchmark dataset by Agtzidis et al. [2]. Each metric is averaged over the available participants for the
corresponding video.

Video # Participants Foveation WS-PSNR (db) SSIM Bitrate (Mb/s) Packet Size Flicker

01 park 13
Log-Polar 25.34 0.873 2.34 9.76 70.12
Log-Rectilinear 26.59 0.910 2.76 11.50 116.81
SAT Log-Rectlinear 27.60 0.915 2.02 8.42 38.97

02 festival 13
Log-Polar 22.84 0.833 3.66 15.25 162.32
Log-Rectilinear 24.94 0.890 3.90 16.27 206.09
SAT Log-Rectlinear 25.61 0.889 3.34 13.92 117.27

03 drone 13
Log-Polar 25.96 0.884 3.41 14.22 109.29
Log-Rectilinear 28.01 0.927 3.62 15.09 149.81
SAT Log-Rectlinear 28.94 0.929 2.99 12.48 66.88

04 turtle rescue 13
Log-Polar 29.41 0.884 2.96 12.31 85.47
Log-Rectilinear 31.56 0.913 2.92 12.17 104.94
SAT Log-Rectlinear 32.13 0.915 2.35 9.78 57.81

05 cycling 13
Log-Polar 26.32 0.898 3.77 15.72 281.49
Log-Rectilinear 28.52 0.930 3.83 15.95 293.00
SAT Log-Rectlinear 29.10 0.929 3.42 14.26 205.21

06 forest 12
Log-Polar 21.41 0.763 3.78 15.74 373.50
Log-Rectilinear 22.80 0.826 5.76 24.00 417.51
SAT Log-Rectlinear 23.36 0.821 4.24 17.66 288.02

07 football 12
Log-Polar 25.82 0.847 3.10 12.91 93.11
Log-Rectilinear 27.88 0.889 3.37 14.05 117.98
SAT Log-Rectlinear 28.76 0.896 2.58 10.74 52.52

08 courtyard 12
Log-Polar 26.23 0.886 2.77 11.53 76.02
Log-Rectilinear 28.72 0.919 2.56 10.65 95.46
SAT Log-Rectlinear 29.55 0.922 1.88 7.81 36.80

09 expo 12
Log-Polar 24.14 0.897 2.83 11.78 101.21
Log-Rectilinear 26.36 0.932 2.88 12.01 157.25
SAT Log-Rectlinear 27.07 0.931 2.47 10.28 68.93

10 eiffel tower 12
Log-Polar 26.63 0.895 3.18 13.26 87.74
Log-Rectilinear 28.73 0.926 3.20 13.34 131.27
SAT Log-Rectlinear 29.54 0.928 2.61 10.86 52.23

11 chicago 12
Log-Polar 24.86 0.873 3.60 15.00 175.60
Log-Rectilinear 27.13 0.915 3.77 15.69 206.80
SAT Log-Rectlinear 27.89 0.917 3.18 13.25 126.44

12 driving 11
Log-Polar 22.73 0.848 4.18 17.41 338.50
Log-Rectilinear 24.76 0.897 5.88 24.48 325.10
SAT Log-Rectlinear 25.52 0.896 4.63 19.28 230.83

13 drone low 12
Log-Polar 25.37 0.845 4.07 16.94 229.20
Log-Rectilinear 27.47 0.888 4.33 18.06 268.07
SAT Log-Rectlinear 28.34 0.891 3.53 14.72 166.71

14 cats 12
Log-Polar 24.91 0.868 3.19 13.31 91.06
Log-Rectilinear 27.24 0.923 3.61 15.04 128.21
SAT Log-Rectlinear 28.13 0.927 2.77 11.54 46.90

mance impact of our sampling method compared with other foveation
sampling methods. During streaming, we observe that GPU utilization
on the server is around 11%. Thus, the server supports streaming to
multiple connections at 1080p on a single GPU. However, our current
implementation is limited to 1080p due to bottlenecks in CPU video
decoding.

6 DISCUSSION

Our experiments show that sampling with our log-rectilinear transfor-
mation using a summed-area table yields reduced flickering and reduced
bit rate compared with using a log-polar approach sampling from the
video frames directly. For most videos with still or slow camera move-
ments, our log-rectilinear transformation paired with a summed-area
table dramatically reduces flicker. In videos with abnormally large
camera movements, such as the cycling video and the driving video,
our flickering metric yields very high values for all three foveation
approaches due to the large luminance changes between frames.

In our performance comparison, we see that our pipeline consumes
only 1 to 2 milliseconds of additional processing time compared with

other foveation approaches. Although our summed-area approach reads
four pixels from the summed-area table buffer during the sampling
stage, sampling still takes less than 0.6 ms in our experiments as shown
in Table 4. This can be explained by caching between threads within
the same work-group. While each thread reads four pixels from the
full-resolution summed-area table buffer, the same values are read by
neighboring threads allowing the GPU to efficiently cache values from
the summed-area table. To produce a w×h size log-rectilinear buffer,
only (w+1)× (h+1) values are read in total from the summed-area
table. For all sampling methods, the server processing time is within
10−15 ms, similar to other cloud-driven AR and VR systems [42, 52].

Comparing the encoded packet sizes between all the approaches, we
see that all foveation methods yield significantly reduced packet sizes
compared with encoding at the full resolution, often with over 50%
bandwidth savings. With significantly reduced bit rates, we envision
that our technique may be useful in Content Delivery Network (CDN)
and edge computing devices to reduce the bandwidth needed for In-
ternet streaming of high-resolution 360◦ videos for eye-tracking VR
headsets.



Limitations

Despite yielding better metrics compared with other approaches, our
technique requires real-time server-side video processing for each view-
ing session. With this limitation in mind, we expect our technique to
be well suited for high-performance but low-bandwidth situations. For
instance, popular movies and videos can be cached in a nearby CDN
edge server and foveated for mobile VR video streaming to a wire-
less HMD. Recently, Google Stadia5 and Microsoft Project xCloud6

empower users to play video games on the cloud at a resolution up
to 4K at 60 FPS. As more virtual reality games debut on the market,
we expect foveated video streaming will become necessary for virtual
reality games to be played on these cloud services over existing and
upcoming network infrastructures.

While we have designed a full 360◦ video streaming pipeline to
demonstrate the applicability of our transformation, this implementa-
tion is not the primary contribution of this paper. Our pipeline lacks fea-
tures such as gaze prediction, rate adaptation, frame buffering, and other
system-level optimizations that would be required for a fully-featured
streaming service. As such, our evaluation focuses on comparing our
log-rectilinear transformation to the conventional log-polar transforma-
tion for video streaming rather than an extensive Quality of Experience
(QoE) evaluation against existing systems such as Flare [38]. Stan-
dardizing evaluations of 360◦ video streaming systems is an ongoing
challenge for multimedia systems researchers [1]. We leave the de-
velopment of a fully-featured production-grade video pipeline and the
QoE evaluation of the proposed pipeline for future work.

7 CONCLUSION

In this paper, we have presented a log-rectilinear transformation that
combines foveation, summed-area tables, and off-the-shelf video en-
coding to enable 360◦ foveated video streaming for eye-tracking VR
headsets. To evaluate our novel transformation, we have designed and
implemented a 360◦ foveated video streaming pipeline for the log-polar
and our log-rectilinear transformation. Our evaluation measuring the
quality, performance, and storage aspects shows that our log-rectilinear
transformation reduces flickering when paired with summed-area table
filtering.

In the future, we plan to extend our pipeline to further reduce artifacts
and improve quality for foveated video streaming. Incorporating gaze
prediction and viewport prediction [16, 37] would allow short-term
buffering on the client. Combining our transcoding technique with
previous work on pre-processed multi-resolution blocks [38] could lead
to reduced server load for 360◦ applications. Eye-dominance-guided
foveation [31] may be adapted for streaming stereo 360◦ video.

With the ever-increasing resolutions of VR headsets and 360◦ cam-
eras and the growing popularity of cloud-based gaming platforms as
well as extended-reality applications [7,8,27], we believe our novel log-
rectilinear transformation will make 360◦ VR content more immersive
and accessible for everyone.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for the valuable com-
ments on the manuscript. This work has been supported in part by
the NSF Grants 15-64212 and 18-23321 and the State of Maryland’s
MPower initiative. Any opinions, findings, conclusions, or recommen-
dations expressed in this article are those of the authors and do not
necessarily reflect the views of the research sponsors.

REFERENCES

[1] S. Aggarwal, S. Paul, P. Dash, N. S. Illa, Y. C. Hu, D. Koutsonikolas,
and Z. Yan. How to evaluate mobile 360° video streaming systems? In
Proceedings of the 21st International Workshop on Mobile Computing
Systems and Applications, HotMobile ’20, p. 68–73. Association for Com-
puting Machinery, New York, NY, USA, 2020. doi: 10.1145/3376897.
3377865

5Google Stadia: https://stadia.google.com
6Project xCloud: https://xbox.com/xbox-game-streaming/project-xcloud

[2] I. Agtzidis, M. Startsev, and M. Dorr. 360-degree video gaze behaviour:
A ground-truth data set and a classification algorithm for eye movements.
In Proceedings of the 27th ACM International Conference on Multimedia
(MM ’19). ACM, 2019. doi: 10.1145/3343031.3350947

[3] R. Albert, A. Patney, D. Luebke, and J. Kim. Latency requirements for
foveated rendering in virtual reality. ACM Trans. Appl. Percept., 14(4),
Sept. 2017. doi: 10.1145/3127589

[4] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
In A. Leonardis, H. Bischof, and A. Pinz, eds., Computer Vision – ECCV
2006, pp. 404–417. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[5] G. E. Blelloch. Prefix Sums And Their Applications. In Synthesis of
Parallel Algorithms. M. Kaufmann, 5 2004. doi: 10.1184/R1/6608579.v1

[6] F. C. Crow. Summed-area tables for texture mapping. In Proceedings
of the 11th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’84, pp. 207–212. ACM, 1984. doi: 10.1145/
800031.808600

[7] R. Du, D. Li, and A. Varshney. Geollery: A mixed reality social media
platform. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, CHI ’19, p. 1–13. Association for Computing
Machinery, New York, NY, USA, 2019. doi: 10.1145/3290605.3300915

[8] R. Du, D. Li, and A. Varshney. Project geollery.com: Reconstructing a live
mirrored world with geotagged social media. In The 24th International
Conference on 3D Web Technology, Web3D ’19, p. 1–9. Association for
Computing Machinery, New York, NY, USA, 2019. doi: 10.1145/3329714
.3338126

[9] J. Dı́az, P.-P. Vázquez, I. Navazo, and F. Duguet. Real-time ambient
occlusion and halos with summed area tables. Computers & Graphics,
34(4):337 – 350, 2010. Procedural Methods in Computer Graphics Illus-
trative Visualization. doi: 10.1016/j.cag.2010.03.005

[10] Y. Emoto, S. Funasaka, H. Tokura, T. Honda, K. Nakano, and Y. Ito. An
optimal parallel algorithm for computing the summed area table on the
GPU. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 763–772, May 2018. doi: 10.1109/
IPDPSW.2018.00123

[11] S. Funasaka, K. Nakano, and Y. Ito. Single kernel soft synchronization
technique for task arrays on CUDA-enabled GPUs, with applications.
In 2017 Fifth International Symposium on Computing and Networking
(CANDAR), pp. 11–20, Nov 2017. doi: 10.1109/CANDAR.2017.35

[12] W. S. Geisler and J. S. Perry. Real-time foveated multiresolution system
for low-bandwidth video communication. In B. E. Rogowitz and T. N.
Pappas, eds., Human Vision and Electronic Imaging III, vol. 3299, pp. 294
– 305. International Society for Optics and Photonics, SPIE, 1998. doi: 10.
1117/12.320120

[13] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang. Pano: Optimizing
360° video streaming with a better understanding of quality perception. In
Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM ’19, p. 394–407. Association for Computing Machinery, New
York, NY, USA, 2019. doi: 10.1145/3341302.3342063

[14] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d
graphics. ACM Trans. Graph., 31(6):164:1–164:10, Nov. 2012. doi: 10.
1145/2366145.2366183

[15] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra. Fast
summed-area table generation and its applications. Computer Graphics
Forum, 24(3):547–555, 2005. doi: 10.1111/j.1467-8659.2005.00880.x

[16] J. Heyse, M. T. Vega, F. de Backere, and F. de Turck. Contextual bandit
learning-based viewport prediction for 360 video. In 2019 IEEE Confer-
ence on Virtual Reality and 3D User Interfaces (VR), pp. 972–973, March
2019. doi: 10.1109/VR.2019.8797830

[17] M. Hosseini. View-aware tile-based adaptations in 360 virtual reality
video streaming. In 2017 IEEE Virtual Reality (VR), pp. 423–424, March
2017. doi: 10.1109/VR.2017.7892357

[18] M. Hosseini and V. Swaminathan. Adaptive 360 VR video streaming: Di-
vide and conquer. In 2016 IEEE International Symposium on Multimedia
(ISM), pp. 107–110, Dec 2016. doi: 10.1109/ISM.2016.0028

[19] D. H. Hubel. Eye, brain, and vision. Scientific American Library/Scientific
American Books, 1995.

[20] G. Illahi, M. Siekkinen, and E. Masala. Foveated video streaming for
cloud gaming. In 2017 IEEE 19th International Workshop on Multimedia
Signal Processing (MMSP), pp. 1–6, Oct 2017. doi: 10.1109/MMSP.2017
.8122235

[21] A. S. Kaplanyan, A. Sochenov, T. Leimkühler, M. Okunev, T. Goodall,
and G. Rufo. Deepfovea: Neural Reconstruction for Foveated Rendering
and Video Compression Using Learned Statistics of Natural Videos. ACM



Transactions on Graphics (TOG), 38(6):212, 2019. doi: 10.1145/3306307.
3328186

[22] A. Kasagi, K. Nakano, and Y. Ito. Parallel algorithms for the summed
area table on the asynchronous hierarchical memory machine, with GPU
implementations. In 2014 43rd International Conference on Parallel
Processing, pp. 251–260, Sep. 2014. doi: 10.1109/ICPP.2014.34

[23] H. Kim, J. Yang, M. Choi, J. Lee, S. Yoon, Y. Kim, and W. Park. Eye
tracking based foveated rendering for 360 VR tiled video. In Proceedings
of the 9th ACM Multimedia Systems Conference, MMSys ’18, p. 484–486.
Association for Computing Machinery, New York, NY, USA, 2018. doi:
10.1145/3204949.3208111

[24] O. Komogortsev and J. Khan. Predictive perceptual compression for real
time video communication. In Proceedings of the 12th Annual ACM
International Conference on Multimedia, MULTIMEDIA ’04, pp. 220–
227. ACM, New York, NY, USA, 2004. doi: 10.1145/1027527.1027577

[25] W.-T. Lee, H.-I. Chen, M.-S. Chen, I.-C. Shen, and B.-Y. Chen. High-
resolution 360 video foveated stitching for real-time VR. Computer
Graphics Forum, 36(7):115–123, 2017. doi: 10.1111/cgf.13277

[26] K. Lei and J. F. Hughes. Approximate depth of field effects using few
samples per pixel. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, I3D ’13, pp. 119–128. ACM, New
York, NY, USA, 2013. doi: 10.1145/2448196.2448215

[27] D. Li, E. Lee, E. Schwelling, M. G. Quick, P. Meyers, R. Du, and A. Varsh-
ney. Meteovis: Visualizing meteorological events in virtual reality. In
Extended Abstracts of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI EA ’20, p. 1–9. Association for Computing
Machinery, New York, NY, USA, 2020. doi: 10.1145/3334480.3382921

[28] X. Liu, Q. Xiao, V. Gopalakrishnan, B. Han, F. Qian, and M. Varvello.
360◦ innovations for panoramic video streaming. In Proceedings of the
16th ACM Workshop on Hot Topics in Networks, HotNets-XVI, pp. 50–56.
ACM, New York, NY, USA, 2017. doi: 10.1145/3152434.3152443

[29] Y. Liu, Z. G. Li, and Y. C. Soh. Region-of-interest based resource al-
location for conversational video communication of h.264/avc. IEEE
Transactions on Circuits and Systems for Video Technology, 18(1):134–
139, Jan 2008. doi: 10.1109/TCSVT.2007.913754
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